Online Calibration of Phasor Measurement Unit Using Density-Based Spatial Clustering

نویسندگان

  • Xinan Wang
  • Di Shi
  • Zhiwei Wang
  • Chunlei Xu
  • Qibing Zhang
  • Xiaohu Zhang
  • Zhe Yu
چکیده

Data quality of Phasor Measurement Unit (PMU) is receiving increasing attention as it has been identified as one of the limiting factors that affect many wide-area measurement system (WAMS) based applications. In general, existing PMU calibration methods include offline testing and model based approaches. However, in practice, the effectiveness of both is limited due to the very strong assumptions employed. This paper presents a novel framework for online bias error detection and calibration of PMU measurement using density-based spatial clustering of applications with noise (DBSCAN) based on much relaxed assumptions. With a new problem formulation, the proposed data mining based methodology is applicable across a wide spectrum of practical conditions and one side-product of it is more accurate transmission line parameters for EMS database and protective relay settings. Case studies demonstrate the effectiveness of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

Online Inertia Constant and Thévenin Equivalent Estimation Using PMU Data

In this paper a new algorithm based on phasor measurements for estimating the Thévenin Equivalent (TE) and system inertia constant is proposed. The method estimates the network TE seen from a generator terminal and equivalent system inertia constant by means of phasor data that is available at Phasor Data Concentrator (PDC) center. It is shown that the parameters of the TE could be estimated at...

متن کامل

Using of Clustering Techniques in Optimal Placement of Phasor Measurements Units

The phasor measurement unit (PMU) is considered to be one of the most important measuring devices in the future of power systems. The distinction comes from its unique ability to provide synchronized phasor measurements of voltages and currents from widely dispersed locations in an electric power grid. This paper proposes an algorithm based on the clustering techniques for solving the optimal P...

متن کامل

Presenting a New Method Based on Branch Placement for Optimal Placement of Phasor Measurement Units

In this paper, a new method based on branch placement for the optimal positioning of Phasor Measurement Units (PMUs) in power systems is proposed. In this method, the PMUs are in type of single-channel and are installed at the beginning of the branches. Therefore, they are able to measure the bus voltages. Also, the installation of the PMUs on the branches increases the security of observabilit...

متن کامل

Robust state estimation in power systems using pre-filtering measurement data

State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.03917  شماره 

صفحات  -

تاریخ انتشار 2017